Abstract
The free boundary problem for the three dimensional incompressible elastodynamics system is studied under the Rayleigh–Taylor sign condition. Both the columns of the elastic stress FF⊤−I and the transpose of the deformation gradient F⊤−I are tangential to the boundary which moves with the velocity, and the pressure vanishes outside the flow domain. The linearized equation takes the form of wave equation in terms of the flow map in the Lagrangian coordinate, and the local-in-time existence of a unique smooth solution is proved using a geometric argument in the spirit of [19].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.