Abstract

A system of partial differential equations representing stochastic neural fields was recently proposed with the aim of modelling the activity of noisy grid cells when a mammal travels through physical space. The system was rigorously derived from a stochastic particle system and its noise-driven pattern-forming bifurcations have been characterised. However, due to its nonlinear and non-local nature, standard well-posedness theory for smooth time-dependent solutions of parabolic equations does not apply. In this article, we transform the problem through a suitable change of variables into a nonlinear Stefan-like free boundary problem and use its representation formulae to construct local-in-time smooth solutions under mild hypotheses. Then, we prove that fast-decaying initial conditions and globally Lipschitz modulation functions imply that solutions are global-in-time. Last, we improve previous linear stability results by showing nonlinear asymptotic stability of stationary solutions under suitable assumptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.