Abstract

This paper is devoted to build the well-posedness and regularity for solutions of Caputo stochastic fractional delay differential equations (for short CSFDDE) of order α∈(12,1). Firstly, under local Lipschitz condition of coefficients, we show a result on the existence and uniqueness of solutions. Secondly, under global Lipschitz condition of coefficients, we show the continuous dependence of solutions on the initial values and on the fractional exponent α and the regularity in time for solutions is also derived. The main ingredient in the proof is to use a temporally weighted norm, Banach fixed point theorem and truncation procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.