Abstract

Dental caries results from the bacterial pathogen Streptococcus mutans (S. mutans) and is the maximum critical reason for caries formation. Consequently, the present study aims to evaluate the antibacterial activity of a newly synthesized nanoantibiotic–Biodentine formulation. The silver nanoparticles (ROE-AgNPs) were biosynthesized from the usage of Rosmarinus officinalis L. extract (ROE) and conjugated with cefuroxime to form Cefuroxime-ROE-AgNPs. Using Biodentine™ (BIOD), five groups of dental materials were prepared, in which Group A included conventional BIOD, Group B included BIOD with ROE-AgNPs, Groups C and D included BIOD with Cefuroxime-ROE-AgNPs at concentrations of 0.5% and 1.5% cefuroxime, respectively, and Group E included BIOD with 1.5% cefuroxime. The synthesized ROE-AgNPs or Cefuroxime-ROE-AgNPs were characterized for conjugating efficiency, morphology, particle size, and in vitro release. Minimum inhibitory concentration (MIC) of the cefuroxime, ROE-AgNPs, and Cefuroxime-ROE-AgNPs were additionally evaluated against cefuroxime resistant S. mutans, which furthered antibacterial efficacy of the five groups of dental materials. The UV-Visible spectrum showed the ROE-AgNPs or Cefuroxime-ROE-AgNPs peaks and their formation displayed through transmission electron microscopy (TEM), X-ray diffraction (XRD) pattern, and Fourier transforms infrared (FTIR) analysis. The end result of Cefuroxime-ROE-AgNPs showed conjugating efficiency up to 79%. Cefuroxime-ROE-AgNPs displayed the highest antibacterial efficacy against S. mutans as compared to cefuroxime or ROE-AgNPs alone. Moreover, the MIC of ROE-AgNPs and Cefuroxime-ROE-AgNPs was detected against S. mutans to be 25 and 8.5 μg/mL, respectively. Consequently, Cefuroxime-ROE-AgNPs displayed that a decrease in the MIC reached to more than three-fold less than MIC of ROE-AgNPs on the tested strain. Moreover, Cefuroxime-ROE-AgNPs/BIOD was employed as a novel dental material that showed maximum antimicrobial activity. Groups C and D of novel materials showed inhibitory zones of 19 and 26 mm, respectively, against S. mutans and showed high antimicrobial rates of 85.78% and 91.17%, respectively. These data reinforce the utility of conjugating cefuroxime with ROE-AgNPs to retrieve its efficiency against resistant S. mutant. Moreover, the nanoantibiotic delivered an advantageous antibacterial effect to BIOD, and this may open the door for future conjugation therapy of dental materials against bacteria that cause dental caries.

Highlights

  • S. mutans has been demonstrated as a causative bacterium for dental caries, as it ferS.carbohydrates mutans has been demonstrated as a acids causative forleading dental to caries, as it ments to organic acids

  • Biosynthesis of Rosmarinus officinalis L. extract (ROE)-AgNPs with Its Conjugation to Cefuroxime and Determination of ROE-AgNPs have been biosynthesized by reducing AgNO3 to ROE-AgNPs using ROE

  • Cefuroxime was conjugated to ROE-AgNPs to form CefuroximeROE-AgNPs nanoantibiotics

Read more

Summary

Introduction

S. mutans has been demonstrated as a causative bacterium for dental caries, as it ferS.carbohydrates mutans has been demonstrated as a acids causative forleading dental to caries, as it ments to organic acids. These causebacterium a lower pH, increased ferments carbohydrates to organic acids. These acids cause a lower pH, leading to inenamel solubility that is manifested in the form of dental caries [1]. Characters can besolubility used for that targeted therapeutic dentalcaries applications. Nanonanoscale characters can be used for targeted therapeutic delivery and dental particle-conjugated biomaterials had been applied in various dentistry andapplications

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.