Abstract

Protein‐based nanoparticles are widely used for effective biomedical applications. The objective of this work is to design series of magnetic resonance imaging (MRI)‐visible cationic supramolecular nanoparticles (PGEA@BSA‐Ad/Gd3+) based on bovine serum albumin (BSA) and β‐cyclodextrin‐cored star ethanolamine‐functionalized poly(glycidyl methacrylate) (CD‐PGEA) in the presence of Gd3+ ions for multifunctional delivery systems. CD‐PGEA is prepared via atom transfer radical polymerization and ring‐opening reaction. It is found that in the absence of Gd3+ ions, CD‐PGEA does not well interact with adamantine‐modified BSA (BSA‐Ad). The well‐defined PGEA@BSA‐Ad/Gd3+ supramolecular nanoparticles could be produced through the synergistic actions of the host–guest and electrostatic self‐assemblies by mixing aqueous solutions of CD‐PGEA, BSA‐Ad, and Gd3+. In comparison with CD‐PGEA assembly units, such kinds of uniform PGEA@BSA‐Ad/Gd3+ supramolecular nanoparticles exhibit better pDNA condensation ability, lower cytotoxicity, higher gene transfection, and easier cellular uptake. In addition, PGEA@BSA‐Ad/Gd3+ also produces outstanding MRI abilities, much better than Magnevist (Gd‐diethylenetriaminepentacetate acid). The present design of protein–polymer supramolecular nanoparticles with MRI contrast agents would provide a new way for multifunctional gene/drug delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call