Abstract

This focus review describes several methods for aligning π-electronic systems to achieve various functionalities in both solution and the solid phase. Cyclic oligomers, acting as tethering units, can facilitate precise design of the nanoarchitecture of π-electronic systems. This approach produces three-dimensionally aligned structures of π-electronic systems in diluted solutions, where the intermolecular interactions are partially excluded. In the solid state, charged π-electronic systems exhibit nanoarchitectures based on electrostatic interactions, including the repulsive and attractive forces generated between the identically charged and differently charged species, respectively. These methods for controlling the arrangements of π-electronic systems can produce fascinating molecular systems. The performance of organic optoelectronic materials is strongly affected by the three-dimensional (3D) alignment of π-electronic systems. This focus review describes several methods for aligning π-electronic systems to achieve various functionalities in both solution and the solid phase. Cyclic oligomers, acting as tethering units, can facilitate precise design of the nanoarchitecture of π-electronic systems in diluted solutions. In the solid state, charged π-electronic systems exhibit nanoarchitectures based on electrostatic interactions. These methods for controlling the arrangements of π-electronic systems can produce fascinating molecular systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.