Abstract

AbstractPost-polymerization modification (PPM) via active ester chemistry is a valuable method for modulating side-chain structures without altering their main-chain topology. Herein, we synthesized a double-stranded vinyl polymer with an active ester by crosslinking radical polymerization within the nanochannels of a metal‒organic framework (MOF) with a pore diameter comparable to that of the duplex. The resulting double-stranded poly(1,1,1,3,3,3-hexafluoroisopropyl acrylate) (DPHFIPA) was readily converted into acrylates and acrylamides with side chains derived from the nucleophile used in the PPM. This approach offers a pathway for creating double-stranded vinyl polymers with repeating units that are otherwise difficult to synthesize, even when MOF-templated polymerization is used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.