Abstract
We describe several general methods for calculating weights of mixed tilting sheaves. We introduce a notion called "non-cancellation property" which implies a strong uniqueness of mixed tilting sheaves and enables one to calculate their weights effectively. When we have a certain Radon transform, we prove a geometric analogue of Ringel duality which sends tilting objects to projective objects. We apply these methods to (partial) flag varieties and affine (partial) flag varieties and show that the weight polynomials of mixed tilting sheaves on flag and affine flag varieties are essentially given by Kazhdan-Lusztig polynomials. This verifies a mixed geometric analogue of a conjecture by W.Soergel in \cite{Sg1}.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have