Abstract
In this paper, we introduce the weighted variable exponent Lebesgue spaces defined on a probability space and give some information about the martingale theory of these spaces. We first prove several basic inequalities for expectation operators and obtain several norm convergence conditions for martingales in weighted variable exponent Lebesgue spaces. We discuss the Hölder inequality and embedding properties in these spaces. Finally, under some conditions we investigate Doob’s maximal function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.