Abstract

We consider weighted Radon transforms on the plane, where weights are given as finite Fourier series in angle variable. By means of additive Riemann-Hilbert problem techniques, we reduce inversion of these transforms to solving first order differential systems on $\R^2=\C$ with a decay condition at infinity. As a corollary, we obtain new injectivity and inversion results for weighted Radon transforms on the plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.