Abstract

In this article, we present a systematic approach to design chaos generators using integer order and fractional order differential equation systems. A series of multiwing chaotic attractors and grid multiwing chaotic attractors are obtained using linear integer order differential equation systems with switching controls. The existence of chaotic attractors in the corresponding fractional order differential equation systems is also investigated. We show that, using the nonlinear fractional order differential equation system, or linear fractional order differential equation systems with switching controls, a series of multiwing chaotic attractors can be obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.