Abstract

In this article, we investigate the generation of a class of hyperchaotic systems via the Chen chaotic system using both integer order and fractional order differential equation systems. Based on the Chen chaotic system, we designed a system with four nonlinear ordinary differential equations. For different parameter sets, the trajectory of the system may diverge or display a hyperchaotic attractor with double wings. By linearizing the ordinary differential equation system with divergent trajectory and designing proper switching controls, we obtain a chaotic attractor. Similar phenomenon has also been observed in linearizing the hyperchaotic system. The corresponding fractional order systems are also considered. Our investigation indicates that, switching control can be applied to either linearized chaotic or nonchaotic differential equation systems to create chaotic attractor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.