Abstract

We introduce a distance-based phylogeny reconstruction method called "weighted neighbor joining," or "Weighbor" for short. As in neighbor joining, two taxa are joined in each iteration; however, the Weighbor criterion for choosing a pair of taxa to join takes into account that errors in distance estimates are exponentially larger for longer distances. The criterion embodies a likelihood function on the distances, which are modeled as correlated Gaussian random variables with different means and variances, computed under a probabilistic model for sequence evolution. The Weighbor criterion consists of two terms, an additivity term and a positivity term, that quantify the implications of joining the pair. The first term evaluates deviations from additivity of the implied external branches, while the second term evaluates confidence that the implied internal branch has a positive branch length. Compared with maximum-likelihood phylogeny reconstruction, Weighbor is much faster, while building trees that are qualitatively and quantitatively similar. Weighbor appears to be relatively immune to the "long branches attract" and "long branch distracts" drawbacks observed with neighbor joining, BIONJ, and parsimony.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.