Abstract

Weighted multiscale support vector regression combined with ultraviolet–visible (UV–Vis) spectra for quantitative analysis of edible blend oil is proposed. In the approach, UV–Vis spectra of the training set are decomposed into a certain number of intrinsic mode functions (IMFs) and a residue by empirical mode decomposition (EMD) at first. Then support vector regression (SVR) sub-models are built on each IMF and residue. For prediction set, the spectra are decomposed as done on the training set and the final predictions are obtained by integrating SVR sub-model predictions by weighted average. The weight of the sub-model is the reciprocal of the fourth power of the root mean square error of cross-validation (RMSECV). For predicting peanut oil in binary blend oil and sesame oil in ternary blend oil, the proposed method has superiority in root mean square error of prediction (RMSEP) and correlation coefficient (R) compared with SVR and partial least squares (PLS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.