Abstract

The weighted matroid parity problems for the matching matroid and gammoids are among the very few cases for which the weighted matroid parity problem is polynomial time solvable. In this work we extend these problems to a general revenue function for each pair, and show that the resulting problem is still solvable in polynomial time via a standard weighted matching algorithm. We show that in many other directions, extending our results further is impossible (unless P = NP). One consequence of the new polynomial time algorithm is that it demonstrates, for the first time, that a prize-collecting assignment problem with “pair restriction” is solved in polynomial time. The prize collecting assignment problem is a relaxation of the prize-collecting traveling salesman problem which requires, for any prescribed pair of nodes, either both nodes of the pair are matched or none of them are. It is shown that the prize collecting assignment problem is equivalent to the prize collecting cycle cover problem which is hence solvable in polynomial time as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.