Abstract

The P systems (or membrane systems) are a class of distributed parallel computing devices of a biochemical type, where membrane division is the frequently investigated way for obtaining an exponential working space in a linear time, and on this basis solving hard problems, typically NP-complete problems, in polynomial (often, linear) time. In this paper, using another way to obtain exponential working space --- membrane separation, it was shown that Satisfiability Problem and Hamiltonian Path Problem can be deterministically solved in linear or polynomial time by a uniform family of P systems with separation rules, where separation rules are not changing labels, but polarizations are used. Some related open problems are mentioned.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.