Abstract

Near-infrared (NIR) spectroscopy is frequently used to predict quality-relevant variables that are difficult to measure online. This technology can be applied by developing the NIR model in advance. Obtaining a high-accuracy NIR model is difficult using traditional modeling methods because process data inherently contain uncertainties and present strong non-Gaussian characteristics. Considering the difficulty in obtaining precise prediction results, biased estimation is important in producing qualified products when NIR spectroscopy is used in a feedback quality control system. The present work proposes a biased estimation model based on probabilistic representation to address the aforementioned issues. Additionally, a novel weighted incremental strategy with “just-in-time” learning is proposed to improve model adaptiveness. In this way, the NIR model could be established and maintained without imposing any distribution hypothesis on process data, and biased estimation could be obtained in the form of probability. The performance of the proposed method is demonstrated on an actual data set from a gasoline blending process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.