Abstract

For a certain class of radial weights, we prove weighted norm estimates for commutators with BMO coefficients of singular operators in local generalized Morrey spaces. As a consequence of these estimates, we obtain norm inequalities for such commutators in the generalized Stummel-Morrey spaces. We also discuss a.e. well-posedness of singular operators and their commutators on weighted generalized Morrey spaces. The obtained estimates are applied to prove interior regularity for solutions of elliptic PDEs in the frameworks of the corresponding weighted Sobolev spaces based on the local generalized Morrey spaces or Stummel-Morrey spaces. To this end also conditions for the applicability of the representation formula, for the second-order derivatives of solutions to elliptic PDEs, are found for the case of such weighted spaces. In both results, for commutators and applications, we admit weights beyond the Muckenhoupt range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.