Abstract

This work studies the Hardy number of hyperbolic planar domains satisfying Abel’s inclusion property, which are usually known as Koenigs domains. More explicitly, we prove that the Hardy number of a Koenings domains whose complement is non-polar is greater than or equal to 1/2, and this lower bound is sharp. In contrast to this result, we provide examples of general domains whose Hardy numbers are arbitrarily small. Additionally, we outline the connection of the aforementioned class of domains with the discrete dynamics of the unit disc and obtain results on the range of Hardy number of Koenigs maps, in the hyperbolic and parabolic case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.