Abstract
We use the recently introduced padded Schubert polynomials to prove a common generalization of the fact that the weighted number of maximal chains in the strong Bruhat order on the symmetric group is ( n 2 ) ! {n \choose 2}! for both the code weights and the Chevalley weights, generalizing a result of Stembridge. We also define weights which give a one-parameter family of strong order analogues of Macdonald’s well-known reduced word identity for Schubert polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.