Abstract

Food choice motives (i.e., mood, health, natural content, convenience, sensory appeal, price, familiarities, ethical concerns, and weight control) have an important role in transforming the current food system to ensure the healthiness of people and the sustainability of the world. Researchers from several domains have presented several models addressing issues influencing food choice over the years. However, a multidisciplinary approach is required to better understand how various aspects interact with one another during the decision-making procedure. In this paper, four Deep Learning (DL) models and one Machine Learning (ML) model are utilized to predict the weight in pounds based on food choices. The Long Short-Term Memory (LSTM) model, stacked-LSTM model, Conventional Neural Network (CNN) model, and CNN-LSTM model are the used deep learning models. While the applied ML model is the K-Nearest Neighbor (KNN) regressor. The efficiency of the proposed model was determined based on the error rate obtained from the experimental results. The findings indicated that Mean Absolute Error (MAE) is 0.0087, the Mean Square Error (MSE) is 0.00011, the Median Absolute Error (MedAE) is 0.006, the Root Mean Square Error (RMSE) is 0.011, and the Mean Absolute Percentage Error (MAPE) is 21. Therefore, the results demonstrated that the stacked LSTM achieved improved results compared with the LSTM, CNN, CNN-LSTM, and KNN regressor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.