Abstract
The Weibull regression model is a Weibull distribution that is directly influenced by covariates. The Weibull regression model discussed in this study was the Weibull survival and the Weibull hazard regression model. The Weibull regression model in this study was applied to the hospitalization time data of COVID-19 patients from May to September 2021 at the RSUD Abdul Wahab Sjahranie Samarinda. The event of the study is recovery of patient. This study aims to obtain Weibull survival and hazard regression model to the hospitalization time data of Covid-19 patients, to obtain the factors that affect the chance of not recovering (survive) and the recovery rate of Covid-19 patients, and also to interpret Weibull survival and hazard regression models based on the obtained model. In this study, the Maximum Likelihood Estimation (MLE) was used as the parameter estimation method. The closed form of the Maximum Likelihood (ML) estimator cannot be found analytically, and the approximation of ML estimator was found using Newton-Raphson iterative method. Based on the test results, the factors that influence the chance of not recovering and the recovery rate of COVID-19 patients were comorbidities history. The chance of not not recovering (survive) for patients who have a history of comorbidities is greater than the chance of not recovering (survive) for patients who have no history of comorbidities. The recovery rate for COVID-19 patients who have a history of comorbidities is 0,5358 times the recovery rate for patients without a history of comorbidities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.