Abstract
We study Schrödinger operators on L2(ℝd) and ℓ2(ℤd) with a random potential of alloy-type. The single-site potential is assumed to be exponentially decaying but not necessarily of fixed sign. In the continuum setting, we require a generalized step-function shape. Wegner estimates are bounds on the average number of eigenvalues in an energy interval of finite box restrictions of these types of operators. In the described situation, a Wegner estimate, which is polynomial in the volume of the box and linear in the size of the energy interval, holds. We apply the established Wegner estimate as an ingredient for a localization proof via multiscale analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.