Abstract
The integrated density of states (IDS) for random operators is an important function describing many physical characteristics of a random system. Properties of the IDS are derived from the Wegner estimate that describes the influence of finite-volume perturbations on a background system. In this paper, we present a simple proof of the Wegner estimate applicable to a wide variety of random perturbations of deterministic background operators. The proof yields the correct volume dependence of the upper bound. This implies the local Holder continuity of the integrated density of states at energies in the unperturbed spectral gap. The proof depends on theL p-theory of the spectral shift function (SSF), forp ≥ 1, applicable to pairs of self-adjoint operators whose difference is in the trace idealI p, for 0p ≤ 1. We present this and other results on the SSF due to other authors. Under an additional condition of the single-site potential, local Holder continuity is proved at all energies. Finally, we present extensions of this work to random potentials with nonsign definite single-site potentials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.