Abstract
Field and laboratory experiments were conducted in the early and late rainy seasons in Thailand to evaluate the effect of pre-emergence application of herbicides and determine the herbicide residues on vegetable soybean ( Glycine max L. Merrill cv. No. 75) production. No visible crop injury was observed after application of alachlor 469 g a.i./ha, clomazone 1080 g a.i./ha, metribuzin 525 g a.i./ha, pendimethalin 1031.25 g a.i./ha, tank-mixed clomazone 960 g a.i./ha + pendimethalin 928 g a.i./ha, or tank-mixed metribuzin 350 g a.i./ha + pendimethalin 928 g a.i./ha. However, acetochlor 1875 g a.i./ha, isoxaflutole 75 g a.i./ha, and oxadiazon 1000 g a.i./ha caused visible crop injury. Plant bioassay of herbicide residues in the soil after harvest showed no phytotoxic effect on baby corn ( Zea mays Linn. cv. Suwan 3), cucumber ( Cucumis sativus L. cv. Pijit 1), pak choi ( Brassica chinensis Jusl. cv. Chinensis), and soybean ( G. max L. Merrill cv. CM 60). Gas Chromatography-Mass Spectrometry (GC–MS) analysis showed no significant herbicide residues on crop yield (or MRLs < 0.01 ppm) for all herbicides used in this study. The application of metribuzin at 525 g a.i./ha was sufficient to provide satisfactory full-season control of several weed species and gave the highest crop yield. In addition, pendimethalin at 1031.25 g a.i./ha, and tank-mixed metribuzin at 350 g a.i./ha + pendimethalin at 928 g a.i./ha can provide a similar level of weed control as an alternative to reduce herbicide dosage thereby increasing food and environmental safety in vegetable soybean production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have