Abstract

PurposeThis paper aims to study the agent learning from expert demonstration data while incorporating reinforcement learning (RL), which enables the agent to break through the limitations of expert demonstration data and reduces the dimensionality of the agent’s exploration space to speed up the training convergence rate.Design/methodology/approachFirstly, the decay weight function is set in the objective function of the agent’s training to combine both types of methods, and both RL and imitation learning (IL) are considered to guide the agent's behavior when updating the policy. Second, this study designs a coupling utilization method between the demonstration trajectory and the training experience, so that samples from both aspects can be combined during the agent’s learning process, and the utilization rate of the data and the agent’s learning speed can be improved.FindingsThe method is superior to other algorithms in terms of convergence speed and decision stability, avoiding training from scratch for reward values, and breaking through the restrictions brought by demonstration data.Originality/valueThe agent can adapt to dynamic scenes through exploration and trial-and-error mechanisms based on the experience of demonstrating trajectories. The demonstration data set used in IL and the experience samples obtained in the process of RL are coupled and used to improve the data utilization efficiency and the generalization ability of the agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call