Abstract

Phishing is a crime that uses social engineering techniques, both in deceptive statements and technically, to steal consumers' personal identification data and financial account credentials. With the new Phishing machine learning approach, websites can be recognized in real-time. K-Nearest Neighbor(KNN) and Naïve Bayes (NB) are popular machine learning approaches. KNN and NB have their own strengths and weaknesses. By combining the two, deficiencies can be covered. So this study proposes to combine K-Nearest Neighbor with Naïve Bayes to classify phishing websites. Based on the results of the accuracy test of the combination of KNN with k=8 and Naïve Bayes, a maximum accuracy of 93.44% is produced. This result is 6.25% superior compared to using only one classifier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.