Abstract
Credit approval prediction is one of the critical challenges in the financial industry, where the accuracy and efficiency of credit decision-making can significantly affect business risk. This study proposes an outlier detection method using the Gaussian Mixture Model (GMM) combined with Extreme Gradient Boosting (XGBoost) to improve prediction accuracy. GMM is used to detect outliers with a probabilistic approach, allowing for finer-grained anomaly identification compared to distance- or density-based methods. Furthermore, the data cleaned through GMM is processed using XGBoost, a decision tree-based boosting algorithm that efficiently handles complex datasets. This study compares the performance of XGBoost with various outlier detection methods, such as LOF, CBLOF, DBSCAN, IF, and K-Means, as well as various other classification algorithms based on machine learning and deep learning. Experimental results show that the combination of GMM and XGBoost provides the best performance with an accuracy of 95.493%, a recall of 91.650%, and an AUC of 95.145%, outperforming other models in the context of credit approval prediction on an imbalanced dataset. The proposed method has been proven to reduce prediction errors and improve the model's reliability in detecting eligible credit applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.