Abstract
The Web 3.0 and metaverse can empower intelligent application of Connected Autonomous Vehicles (CAVs). The adoption of edge computing can contribute to the low latency interaction between CAVs and the metaverse. Microservices are widely deployed on edge networks and the cloud nowadays. User's requests from CAVs are typically fulfilled through the composition of microservices, which may be hosted by contiguous edge nodes. Requests may differ on their required resources at runtime. Consequently, when requests are continuously injected into edge networks, the usage of heterogenous resources, including CPU, memory, and network bandwidth, may not be the same, or differ significantly, on certain edge nodes. This happens especially when burst requests are injected into the network to be satisfied concurrently. Therefore, the usage of heterogenous resources provided by edge nodes should be co-optimized through re-scheduling microservices. To address this challenge, this paper proposes a Web 3.0-enabled M icroservice R e- S cheduling approach (called MRS ), which is a migration-based mechanism integrating a placement strategy. Specifically, we formulate the microservice re-scheduling task as a multi-objective and multi-constraint optimization problem, which can be solved through a penalty signal-integrated framework and an improved pointer network. Extensive experiments are conducted on two real-world datasets. Evaluation results show that our MRS performs better than the counterparts with improvements of at least 7.7%, 2.4% and 2.2% in terms of network throughput, latency and energy consumption.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have