Abstract

An effective method based on measuring the fiber orientation of yarn floats with two-dimensional Fourier transform (2-D FFT) is proposed to recognize the weave pattern of yarn-dyed fabric in the high-resolution image. The recognition process consists of four main steps: 1. High-resolution image reduction, 2.Fabric image skew correction, 3.Yarn floats localization, 4. Yarn floats classification. Firstly, the high-resolution image is reduced by the nearest interpolation algorithm. Secondly, the skew of the fabric image is corrected based on Hough transform. Thirdly, the yarn floats in the fabric image is localized by the yarns segmentation method based on the mathematical statistics of sub-images. Fourthly, the high-resolution image is corrected and its yarns are segmented successively according to the inspection information of the reduced image. The fiber orientations are detected by 2-D FFT, and the yarn floats are classified by k-means clustering algorithm. Experimental results and discussions demonstrate that, by measuring the fiber orientation of yarn floats, the proposed method is effective to recognize the yarn floats and the weave pattern for yarn-dyed, solid color, and gray fabrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.