Abstract

Gait impairments are among the most common and disabling symptoms of Parkinson’s disease and worsen as the disease progresses. Early detection and diagnosis of subtype-specific gait deficits, as well as progression monitoring, can help to implement effective and preventive personalized treatment for PD patients. Yet, the gait features have not been fully studied in PD and its motor subtypes. To characterize comprehensive and objective gait alterations and to identify the potential gait biomarkers for early diagnosis, subtype differentiation, and disease severity monitoring. We analyzed gait parameters related to upper/lower limbs, trunk and lumbar, and postural transitions from 24 tremor-dominant (TD) and 20 postural instability gait difficulty (PIGD) dominant PD patients who were in early stage and 39 matched healthy controls (HC) during the Timed Up and Go test using wearable sensors. Results show: (1) Both TD and PIGD groups showed restricted backswing range in bilateral lower extremities and more affected side (MAS) arm, reduced trunk and lumbar rotation range in the coronal plane, and low turning efficiency. The receiver operating characteristic (ROC) analysis revealed these objective gait features had high discriminative value in distinguishing both PD subtypes from the HC with the area under the curve (AUC) values of 0.7~0.9 (p < 0.01). (2) Subtle but measurable gait differences existed between TD and PIGD patients before the onset of clinically apparent gait impairment. (3) Specific gait parameters were significantly associated with disease severity in TD and PIGD subtypes. Objective gait biomarkers based on wearable sensors may facilitate timely and personalized gait treatments in PD subtypes through early diagnosis, subtype differentiation, and disease severity monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call