Abstract

The development of wearable non-invasive glucose sensors provides a convenient technical means to monitor the glucose concentration of diabetes patients without discomfortability and risk of infection. Apart from enzymes as typical catalytic materials, the active catalytic materials of the glucose sensor are mainly composed of polymers, metals, alloys, metal compounds, and various metals that can undergo catalytic oxidation with glucose. Among them, metallic nanomaterials are the optimal materials applied in the field of wearable non-invasive glucose sensing due to good biocompatibility, large specific surface area, high catalytic activity, and strong adsorption capacity. This review summarizes the metallic nanomaterials used in wearable non-invasive glucose sensors including zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) monometallic nanomaterials, bimetallic nanomaterials, metal oxide nanomaterials, etc. Besides, the applications of wearable non-invasive biosensors based on these metallic nanomaterials towards glucose detection are summarized in detail and the development trend of the wearable non-invasive glucose sensors based on metallic nanomaterials is also outlook.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call