Abstract
Uric acid is typically measured through blood tests, which can be inconvenient and uncomfortable for patients. Herein, we propose a wearable surface-enhanced Raman scattering (SERS) chip, incorporating a hydrogel membrane with integrated plasmonic trimers, for noninvasive monitoring of uric acid in sweat. The plasmonic trimers feature sub 5 nm nanogaps, generating strong electromagnetic fields to boost the Raman signal of surrounding molecules. Simultaneously, the hydrogel membrane pumps sweat through these gaps, efficiently capturing sweat biomarkers for SERS detection. The chip can achieve saturation adsorption of sweat within 5 min, eliminating variations in individual sweat production rates. Dynamic SERS tracking of uric acid and lactic acid levels during anaerobic exercise reveals a temporary suppression of uric acid metabolism, likely due to metabolic competition with lactic acid. Furthermore, long-term monitoring correlates well with blood test results, confirming that regular exercise helps reduce serum uric acid levels and supporting its potential in managing hyperuricemia.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have