Abstract

Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring, flexible electronics, and soft robotic skin. The wearable and stretchable strain sensors can be directly attached to human skin, providing visualized detection for human motions and personal healthcare. Conductive polymer composites (CPC) composed of conductive fillers and flexible polymers have the advantages of high stretchability, good flexibility, superior durability, which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity. This review has put forward a comprehensive summary on the fabrication methods, advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years, especially the sensors with superior performance. Finally, the structural design, bionic function, integration technology and further application of CPC strain sensors are prospected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.