Abstract

Wireless and long-range energy transmission is an essential technology in the era of the Internet of Things, and currently it still relies on rigid and bulky metal antennas, which is incompatible with future wearable electronics. Here, we report a wearable and long-range MXene (Ti3C2Tx) 5G antenna energy harvester system that functions reliably as a wireless and battery-free power source for uninterrupted sensing and wireless data transmission. The MXene 5G antenna can efficiently harvest radio frequency (RF) electromagnetic energy at a 5G frequency range 1 band of 915 MHz, under a minimum input RF power density of 0.005 mW·cm−2, about 16 times lower than the threshold value for a control copper antenna. The device shows good mechanical bendability as it keeps over 99% power transfer efficiency at a bending angle of 90°. Our results open a new route for developing next-generation wireless powering for wearable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.