Abstract

Shape-programmable magnetoresponsive soft actuators (SMSAs) are highly desirable for diverse applications in soft robotics and minimally invasive medicine. Current methods face challenges in achieving programmable magnetoresponsive three-dimensional (3D) shapes with non-uniform and continuously adjustable curvatures, which are crucial for the highly effective locomotion of SMSAs. Here, we propose an approach that integrates bioinspired pore design with mechanically guided magnetization, enabling programmable magnetoresponsive complex shapes with non-uniform and continuously adjustable curvatures. Various magnetoresponsive developable and non-developable surfaces, along with biomimetic 3D curved shapes, were prepared. The prepared SMSAs exhibit actuation rates of up to 20 s−1. Furthermore, an inchworm-inspired soft crawling robot capable of steering, navigation, obstacle crossing, and cargo transportation was developed, achieving a locomotion speed of up to 1.2 body lengths per second. This work breaks through the design possibilities for SMSAs, enhances the actuation rates of soft actuators, and advances the application of SMSAs in soft crawling robots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.