Abstract

This paper presents finite element (FE) analysis of the effects of hard carbon coatings on wear evolution of hard-on-hard hip implants. Three different types of thin film hard carbon coatings on the articulating surfaces of the bearing components (e.g., on both head and cup) are considered and they are nanocrystalline diamond (NCD), diamond-like carbon (DLC) and polycrystalline diamond (PCD). By considering the 3D angular rotation as well as gait loading for a normal walking cycle, linear and volumetric wears are computed for 20 million cycles. The FE wear model results were validated with experimental hip simulator study available in the literature. FE simulation results showed that as wear progresses, contact stress at the interface between the head and cup decreases with the increase of gait cycles. Wear modelling indicated that PCD coated bearing couple had the least wear evolution as compared to NCD and DLC coated couples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.