Abstract

Machining CMCs under productivity conditions while limiting tool wear and material damage is a challenge for applications such as jet aircraft engines and industrial turbines. This contribution focused on developing a method to characterize the wear of abrasive tools based on fractal dimensions. This solution allows characterization of the state of the tool after each machining and identification of the type of damage to the tool (regular wear of the diamond grains, cleavage, or breakage) and its influence on the cutting forces, in addition to damage to the machined material and the quality of the machined surface. Thus, the chipped area and the maximum chipping are directly associated with the fractal dimension of the tool surface and the metal removal rate of the process. The quality of the surface (Sa, Sz, and Sq) is associated with the fractal dimension of the surface of the tool characterizing the state of the grinding wheel and the radial depth of cut ae characterizing the engagement of the tool in the CMC material. Moreover, the results also demonstrated that the use of an abrasive tool associated with cutting conditions close to milling and not grinding is a viable solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.