Abstract
BackgroundElectrical Discharge Machining (EDM) is a well-established non-conventional machining process for the machining of electrically conductive and difficult-to-machine materials. But its applications are limited because of the slow machining rate and poor surface finish. Powder mixed EDM (PMEDM) is unitary of the recent progresses in the EDM process in which powder particles mixed in the dielectric fluid results in higher machining rate and better surface quality. In the past, limited work has been found on PMEDM of Inconel-800 material. Researchers have reported about machining with different powder particles like aluminum powder, silicon carbide, graphite etc. in the dielectric fluid of EDM, but the effect of powder particles, i.e. Tungsten carbide, cobalt and boron carbide along with tool material i.e. copper, copper-chromium and graphite on Inconel-800 material has not been explored. The purpose of the present work is to look into the issue of tool material (Cu, copper-chromium, and graphite) along with powder particles (tungsten carbide, cobalt and boron carbide) suspended in EDM oil on Inconel-800 material. MethodsThe present work includes optimization of Material Removal Rate (MRR) and Tool Wear Rate (TWR) for the machining of Inconel-800 material using Powder Mixed Elctric Discharge Machining (PMEDM). Different input parameters such as peak current, pulse on-time, pulse off-time, tool and powder materials along with effect of three micro powder particles, i.e. tungsten carbide, cobalt and boron carbide and three electrodes i.e. copper, copper-chromium, and graphite have been considered for the experimentation. The box-Behnken method of Response Surface Methodology (RSM) has been used for designing the experiments along with the Desirability Approach for multiple response parameters optimization. The adequacy of the proposed mathematical models have also been tested using analysis of variance (ANOVA). Microstructure analysis and transfer of different factors on the machined surface has also been investigated using Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS) and X - Ray Diffraction (XRD).ResultsThe results showed that peak current, pulse on-time, and tool material significantly affects the Material Removal Rate (MRR) while peak current, pulse on-time, tool material and powder materials affected the Tool Wear Rate (TWR). Pulse off-time has a trifling effect on both MRR and TWR, while powder particles on MRR. From desirability approach, the optimal combination of parameters found to be current 1 amp, pulse on-time 0.98 μs, pulse off-time 0.03 μs, tool material 0.31 and the powder (suspended particles) 0.64.ConclusionThe analysis of the experimental observations highlights that the current, pulse on-time and tool material have found to be the most decisive factors for MRR, while current, pulse on-time, tool material and powder particles for TWR.
Highlights
Electrical Discharge Machining (EDM) is a well-established non-conventional machining process for the machining of electrically conductive and difficult-to-machine materials
The box-Behnken method of Response Surface Methodology (RSM) has been considered for the design
It is clear from Scanning Electron Microscope (SEM) micrographs that the current, pulse on-time and tool material affects the integrity of machined specimen resulting in the formation of debris, deep craters, micro cracks and pock marks
Summary
Electrical Discharge Machining (EDM) is a well-established non-conventional machining process for the machining of electrically conductive and difficult-to-machine materials. Kumar et al (2015a, b) evaluated the surface characteristics of the tool electrodes using powder mixed electrical discharge machining (PMEDM) process through Taguchi design. They have reasoned out that the tool material has the maximum effect on the surface roughness of electrode. Kumar et al(2010a, 2010b) used EN-24 tool steel, as a workable material with a copper electrode for experimentation with the abrasive mixed EDM process by suspending silicon powder (2 g/l) in the kerosene dielectric fluid. Singh and Yeh (2012) applied the grey relational analysis for evaluating the response parameters, i.e. TWR, SR, and MRR by mixing abrasive powder particles in the dielectric fluid of EDM They described that the powder mixed dielectric improved the response characteristics.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have