Abstract

Abstract Boronizing is used to obtain very high hardness and wear resistance on ferrous and non-ferrous materials and some super alloys. The process can be carried out in solid, liquid, or gaseous medium. In this work, samples of AISI 1060 steel were treated by the pack boriding method during 2 and 4 h at 900 and 1000°C. Optical microscopy, x-ray diffraction, and micro-hardness analyses were conducted and wear tests were performed using a micro-wear machine with a fixed-ball configuration. The pack boriding resulted in the formation of layers with high hardness and wear resistance. All the borided layers presented top hardness around 2000 HV (Vickers pyramid number). Raising time and temperature of treatment increased the layer thickness. X-ray diffraction patterns showed the presence of only Fe2B for samples treated at 900°C for 2 and 4 h. The samples borided at 1000°C for 2 and 4 h presented layers composed by a mixture of Fe2B and FeB. The wear resistance of the samples borided at 1000°C was higher than that borided at 900°C, probably because of the difference in chemical composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.