Abstract

In order to obtain the high wear- and corrosion-resistant nickel based alloy coatings for laser remanufacturing fretting damaged metal parts which are serviced under high-temperature corrosion and wear conditions, a novel NiCrSiFeBW–CeO2 alloy powder was designed by increasing the content of B and Si, adding tungsten and CeO2 using JMatpro software on the basis of Ni60 alloy powder composition, and the NiCrSiFeBW–CeO2 coating was successfully cladded on 45# steel under different laser energy area densities. The microstructure, wear and corrosion behaviors of the NiCrSiFeBW–CeO2 coatings were systematically studied. The results show that novel NiCrSiFeBW–CeO2 coating produced by laser cladding not only has no cracks but also has both high wear resistance and corrosion resistance due to some ultra-fine compound particle phases in situ generated in its structure. Among these phases, the B3Cr5, CrB4, (Cr, Ni)3C2, Cr7C3, W3Cr12Si5 and (Fe, Ni)5Si3 played a significant role in reinforcing the wear resistance of the coating, while the B3Cr5, W3Cr12Si5 and CrB4 enhanced the corrosion resistance of the coating. The novel NiCrSiFeBW–CeO2 coating prepared under 100 J/mm2 EAD has the best comprehensive performance, the wear loss is 7.53 × 10−5 mm3/N, the Ecorr is − 0.1738 V. Compared with Ni60 alloy coating, the novel Ni-based coating not only has a better laser cladded formability but also similar wear resistance and better corrosion-resistance. It provides a reference for repairing fretting damaged metal parts by laser cladding the nickel based coating with high wear and corrosion resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call