Abstract

To obtain better wear resistance for the metal bond diamond grinding tools, cerium oxide (CeO2) with different contents were introduced into Fe-based diamond composites. A pin-on-disc wear test was performed to assess the wear properties of the fabricated specimens, and the morphological properties of the worn surface and corresponding wear debris were evaluated to examine the wear mechanism. Results show that the Fe-based diamond composites with CeO2 addition exhibited an improvement in the densification, mechanical properties and wear resistance. The original long rod-shaped CeO2 particles converted into the spherical particles <1 μm, dispersing in the Sn phase. The cerium oxide acted as a sintering aid, promoting the diffusion of Fe in the Sn phase during the sintering process. The dominant wear mechanism of the specimen with CeO2 addition was the adhesive wear, compared with the abrasive wear in the specimen without CeO2. With the increase in CeO2 addition amount, the wear rate decreased. But an excessive amount of CeO2 was detrimental to mechanical and wear performances. The optimal amount of cerium oxide to achieve the best wear resistance was investigated to be 0.8 wt%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.