Abstract
The growing high-precision manufacturing industry is increasing the demand for cemented carbide which has fine grain size and excellent machinability. In this research, ultrafine cemented carbide was successfully prepared by the method of in-situ synthesis using spark plasma sintering as densification method, V, Cr, WC and carbon black as raw materials. The formation mechanism of in-situ preparation of grain growth inhibitors (GGIs) and its influence on the properties of alloys were investigated. An excellent mechanical property (HV 2254 kgf/mm2, KIC 9.20 MPa·m1/2) and uniform microstructure of the alloys (0.8 wt% V8C7–0.8 wt% Cr3C2) prepared under 1350 °C, 6 min, 25 MPa were demonstrated by the results. The WC grain growth was significantly inhibited (about 200 nm). The in-situ synthesized GGIs significantly inhibited grain coarsening by interfering with the dissolution-precipitation process of WC during liquid-phase sintering. The combination of SPS and in-situ synthesized GGIs offers a novel approach to exploration of the preparation of high-performance ultrafine or nanocrystalline cemented carbides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Refractory Metals and Hard Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.