Abstract

The applications of magnesium-based alloys are often limited by their poor corrosion and wear resistance performance. The aim of this study is to improve the performance of magnesium alloys by using metal–ceramic coatings. Cu-Ni/Al2O3 and Cu-Zn/Al2O3 coatings were deposited by cold spray. Their microstructure, microhardness, tribological, and corrosion behavior were compared with those of Cu-Al2O3 coatings. The results showed that the Cu-Al2O3 coatings exhibited higher microhardness, lower wear rate, and better corrosion resistance than the Mg alloy substrate, but their antifriction performance was not ideal. Adding Ni or Zn to the Cu-Al2O3 coating resulted in a denser coating with lower porosity. Ni increased the microhardness of the Cu-Al2O3 coating but did not improve its antifriction performance or wear resistance, while Zn increased the microhardness, antifriction performance, and wear resistance of the Cu-Al2O3 coating. The corrosion resistance of the Cu-Al2O3 coating was enhanced by adding Ni, which improved the compactness of the coating, in contrast to the addition of Zn, as the rapid corrosion of Zn resulted in formation of loose corrosion products without protective effect. Thus, such modification of Cu-Al2O3 coatings should be based on application requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.