Abstract
Titanium alloys are promising candidates for orthopedic implants due to their mechanical resilience and biocompatibility. Current titanium alloys in orthopedic implants still suffer from low wear and corrosion resistance. Here, we present a computational method for optimizing the composition of titanium alloys for enhanced corrosion and wear resistance without compromising on other aspects such as phase stability, biocompatibility, and strength. We use the cohesive energy, oxide formation energy, surface work function, and the elastic shear modulus of pure elements as proxy descriptors to guide us towards alloys with enhanced wear and corrosion resistance. For the best-selected candidates, we then use the CALPHAD approach, as implemented in the Thermo-Calc software, to calculate the phase diagram, yield strength, hardness, Pourbaix diagram, and the Pilling-Bedworth (PB) ratio. These calculations are used to assess the thermodynamic stability, biocompatibility, corrosion resistance, and wear resistance of the selected alloys. Additionally, we provide insights about the role of silicon on improving the corrosion and wear resistance of alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.