Abstract
This paper studies the problem of learning image semantic segmentation networks only using image-level labels as supervision, which is important since it can significantly reduce human annotation efforts. Recent state-of-the-art methods on this problem first infer the sparse and discriminative regions for each object class using a deep classification network, then train semantic a segmentation network using the discriminative regions as supervision. Inspired by the traditional image segmentation methods of seeded region growing, we propose to train a semantic segmentation network starting from the discriminative regions and progressively increase the pixel-level supervision using by seeded region growing. The seeded region growing module is integrated in a deep segmentation network and can benefit from deep features. Different from conventional deep networks which have fixed/static labels, the proposed weakly-supervised network generates new labels using the contextual information within an image. The proposed method significantly outperforms the weakly-supervised semantic segmentation methods using static labels, and obtains the state-of-the-art performance, which are 63.2% mIoU score on the PASCAL VOC 2012 test set and 26.0% mIoU score on the COCO dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.