Abstract
As surveillance technology is continuously improving, an ever-increasing number of cameras are being deployed everywhere. Relying on manual detection of anomalies through cameras may be unreliable and untimely. Therefore, the application of deep learning in video anomaly detection is being extensively studied. Anomaly Detection (AD) refers to identifying events that deviate from the desired actions. This article discusses representative unsupervised and weakly-supervised learning methods applied to various data types. In these machine learning methods, Generative Adversarial Network, Auto Encoder, Recurrent Neural Network, etc. are broadly adopted for AD. Some renowned and new datasets are reviewed. Furthermore, we also proposed several future directions of research in video anomaly detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.