Abstract

Object rotation is among longstanding, yet still unexplored, hard issues encountered in the task of weakly supervised object detection (WSOD) from aerial images. Existing predominant WSOD approaches built on regular CNNs which are not inherently designed to tackle object rotations without corresponding constraints, thereby leading to rotation-sensitive object detector. Meanwhile, current solutions have been prone to fall into the issue with unsTable detectors, as they ignore lower-scored instances and may regard them as backgrounds. To address these issues, in this paper, we construct a novel end-to-end weakly supervised Rotation-Invariant aerial object detection Network (RINet). It is implemented with a flexible multi-branch online detector refinement, to be naturally more rotation-perceptive against oriented objects. Specifically, RINet first performs label propagating from the predicted instances to their rotated ones in a progressive refinement manner. Meanwhile, we propose to couple the predicted in-stance labels among different rotation-perceptive branches for generating rotation-consistent supervision and mean-while pursuing all possible instances. With the rotation-consistent supervisions, RINet enforces and encourages consistent yet complementary feature learning for WSOD without additional annotations and hyper-parameters. On the challenging NWPU VHR-10.v2 and DIOR datasets, extensive experiments clearly demonstrate that we significantly boost existing WSOD methods to a new state-of-the-art performance. The code will be available at: https://github.com/XiaoxFeng/RINet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call