Abstract

In contrast to natural objects, aerial targets are usually non-axis aligned with arbitrary orientations. However, mainstream Weakly Supervised Object Detection (WSOD) methods can only predict horizontal bounding boxes (HBB) from existing proposals generated by offline algorithms. To predict oriented bounding boxes (OBB) for aerial targets while testing images end-to-end without proposals, WSODet is designed leveraging on Layer-wise Relevance Propagation (LRP) and Point Set Representation (RepPoints). To be specific, based on the mainstream WSOD framework, Layer-wise Relevance Propagation on Multiple Instance Learning branch (MIL-LRP) is conducted to decrease the uncertainty and ambiguity of feature map. Then, a pseudo oriented label generation algorithm is designed to obtain OBB pseudo labels, which serve as supervision to train an Oriented RepPoint Net under the guidance of improved oriented loss function. During the test, input images are sent to oriented RepPoint branch to obtain OBB predictions without proposals. Extensive experiments on DIOR, NWPU VHR-10.v2 and HRSC2016 datasets demonstrate the effectiveness of our method to predict precise oriented aerial objects, achieving 22.2%, 46.5% and 43.3% mAP, respectively. Moreover, training jointly with oriented RepPoint branch boosts the results of original WSOD framework compared with existing WSOD methods even if there is no specific design for original structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.