Abstract

Weakly nonlinear nonaxisymmetric oscillations of a capillary bridge are considered in the limit of small viscosity. The supporting disks of the liquid bridge are subjected to small amplitude mechanical vibrations with a frequency that is close to a natural frequency. A set of equations is derived for accounting the slow dynamics of the capillary bridge. These equations describe the coupled evolution of two counter-rotating capillary waves and an associated streaming flow. Our derivation shows that the effect of the streaming flow on the capillary waves cannot be a priori ignored because it arises at the same order as the leading (cubic) nonlinearity. The system obtained is simplified, then analyzed both analytically and numerically to provide qualitative predictions of both the relevant large time dynamics and the role of the streaming flow. The case of parametric forcing at a frequency near twice a natural frequency is also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.